

Terahertz-Comb-Referenced Spectrum Analyzer

Takeshi Yasui Osaka University, Japan

CLEO2009@Baltimore (2009.6.1)

Collaborations

Mode-locked Er-doped fiber laser THz clock and synthesizer

Drs. Hajime Inaba and Kaoru Minoshima Nat. Inst. of Adv. Ind. Sci. and Tech. (AIST), Japan

Photomixing of two CW lasers with UTC-PD

Prof. Tadao Nagatsuma Osaka University, Japan

Background

Frequency is a fundamental physical quantity of electromagnetic wave

Maintenance of THz frequency metrology is required for various THz applications

Advent of practical CW-THz sources (THz-QCL, photomixing with UTC-PD, RTD etc)

Precise frequency measurement of CW-THz wave is required!

However, techniques of frequency measurement in THz region are still lacking.

Conventional method

Difficult to cover all frequency region of THz wave (0.1~10THz)

→Requirement of new method optimized for THz wave!

Optical comb and THz comb

Simple, broadband selectivity, high spectral purity, offset free, and absolute frequency calibration

Principle Freq. domain Measured CW-THz wave $(freq. = f_x)$ **CW-THz** wave PC-THz comb THz RF frequency region Antenna counter (Local oscillator •••••• mf frea. with multiple '(m+1)f frequencies) f_{v} =mf+ f_{h} Femtosecond mixina Mixer PC-THz ML laser **Optical** RF comb Beat signal (PCA current) ML frea. = fcomb region **Photoconductive** RF spec rum antenna (PCA) freq. 2f analy er RF beat signal AMP f-f_b f+f_b $2f-f_b$ $2f+f_b$ measure m: order of comb mode f: ML frequency f_b: beat frequency

Ref) Yokoyama et al, "Terahertz spectrum analyzer based on a terahertz frequency comb", Opt. Express 16, pp. 13052-13061 (2008).

Determination of m and sign of fb

Shift of ML freq. by δf $(f \rightarrow f + \delta f)$

$$m = \frac{\left| \delta f_b \right|}{\left| \delta f \right|}$$

Change of beat freq. by δf_b $(f_b \rightarrow f_b + \delta f_b)$

ML-freq.-stabilized fs Er-doped fiber laser

Control system of ML frequency

Photograph and basic performance

 P_{avg} = 90 mW λ_{c} = 1550nm Δt = 41 fs

Instability of ML frequency of fiber laser

Experimental setup

THz-comb-referenced spectrum analyzer

THz detection unit

Bowtie-type LT-GaAs-PCA (0.8µm@6mW)

Bowtie-type 1.5um LT-GaAs-PCA **Optical** fiber Collimator **CW-THz AMP** radiation

Bowtie-type LT-GaAs-PCA (1.5µm@20mW)

Bowtie-type LT-InGaAs-PCA (1.5µm@30mW)

3

Comparison of SNR of fb beat signal

Output of test source = 5.4 mW @ 80 GHz

Linewidth of f_b beat signal

Output freq.=80 GHz

Linewidth = 10 mHz at 1 sec

Determination of absolute frequency

~Shift of ML frequency by 25Hz~

$$m = \frac{|\delta f_b|}{|\delta f|} = \frac{|-35,651.8|}{|25|} \approx 1426$$

$$\frac{\delta f_b}{\delta f} = \frac{-35,651.8}{25} < 0$$

$$f_x = mf + f_b$$
= 1426 * 56,124,408 + 354,191.122
= 80,033,759,999.122 Hz

error=0.878Hz

Setting freq. of test source=80,033,760,000 Hz

Frequency tuning of test source

Mean precision=2.2*10⁻¹¹

Test source based on photomixing of two *free-running* CW lasers

Real-time monitoring of beat signal

← Freq. span = 1.5 MHz →

Output=100µW Freq.=120GHz

Sweep time=20 ms RBW=10 kHz

Large fluctuation of beat frequency caused by two fee-running CW lasers

Test source based on photomixing of two *stabilized* CW lasers

Real-time monitoring of beat signal

THz clock (freq. =121,845,771,520 Hz)

←—4MHz**→**

THz synthesizer (tuning range = 90~140 GHz)

← 16MHz

See CWB7, in Topics in Optical Metrology I, Optical Metrology@2009.6.3

Optical comb and THz comb

Test source with multiple frequencies ranging from sub-THz to THz

Experimental setup

ref) Yasui, APL 88, 241104 (2006). Yokoyama, CMR5, CLEO2007.

Spectrum of EM-THz comb

Spectral range over 1THz!

Observation of EM-THz comb mode

Mode-locked freq. $f_1=81,834,630$ Hz

Measurement time =0.5sec

RBW=10Hz

Average power of each mode < 1nW High sensitivity in THz region

THz frequency metrology based on frequency comb techniques

Same accuracy as microwave and optical regions