

テラヘルツ・カラースキャナー

1. はじめに

われわれはカラースキャナーを日常よく利用する。こ れは可視領域の分光画像を取得する機器であるといえ る。しかし、可視光の物体浸達度の制限により表面近傍 のみの情報しか得られないため、書類や写真の読み取り などに利用が限定されていた。このような技術を物質透 過性の良好なテラヘルツ領域(THz領域:周波数0.1~ 10THz, 波長 30µm~3000µm) まで拡張できると, 物体内部の情報も取得可能になる。さらに、カラー(分 光) 画像も取得できるので, 各種物質固有の吸収スペク トル (THz 指紋スペクトル) を利用して「どこに」,「な にが」あるかを識別できる。このようなTHz 波を用い た成分分析型内部透視イメージング技術は、セキュリテ ィー分野¹⁾,バイオ分野²⁾,製薬分野³⁾等における有力 な検査ツールと期待されている。しかし,通常の点計測 に基づいたTHz 分光イメージング装置では、スペクト ル取得(時間遅延走査)およびイメージ取得のために複 数の機械的走査機構が必要となり、長い測定時間(数時 間以上)を要する。その結果、測定対象が静止物体のみ に限定され、実用を損ねてきた。

ここで、THz 波の光としての並列性に注目し、電気 光学的時間一空間変換による実時間 THz 時間波形計測 と線集光 THz 結像光学系による実時間 THzラインイメ ージングを複合すれば、機械的走査機構が不要になり、 大幅な時間短縮が実現できる⁴⁾。われわれは、THzビー ムをサンプルに対してライン状に集光し、一般のカラー スキャナーと同じくラインの動き(または測定対象の動 き)に合わせて実時間で分光ラインイメージを連続測定 徳島大学大学院 ソシオテクノサイエンス研究部 安井 武史

することにより,従来法と比較して10,000 倍以上の高 速化を実現した⁵⁾。その結果,世界で初めて動体サンプ ルのTHz 分光イメージングに成功した。本稿では,わ れわれが開発したTHzカラースキャナー⁵⁾ とその応用計 測例⁶⁾ を紹介する。

2.THz 波

図1に,電磁波の周波数(波長)マップを示す。THz 領域は,ちょうど光波と電波の境界に位置し,これまで 良質なレーザー光源や高感度検出器の開発が遅れていた ため,唯一残された未開拓電磁波領域であった。しかし,

やすい たけし

近年,近赤外フェムト秒パルスレーザー光を用いること により,パルス状 THz 波(THzパルス)の発生および 検出が室温環境で可能になり,この領域の研究開発『THz テクノロジー』が加速している。

THzパルスは、光波と電波の境界に位置するというこ とから、その両者の性質を有するユニークな電磁波であ る。例えば、レーザー光のようにコヒーレントなビーム として自由空間を伝搬させることが可能である。また、 光波と比較すると波長が極めて長いので、光波領域では 散乱で不透明な物質に対してもほどほどの物質透過性を 得ることができる。従来、物質透過性の良好な電磁波と してX線が広く用いられてきたが、X線と比較すると周

図2 カラースキャナーの測定原理

波数が桁違いに低いので,極めて低エネルギー・低侵襲 で安全安心な電磁波でもある。また,THzパルスは,時 間領域においてサブピコ秒オーダーの超短パルス特性を 示す一方で,周波数領域においては0.1THz~10THzに 及ぶ広帯域スペクトルを示す。THz領域では,骨格振動, ねじれ振動,格子振動,分子の回転,分子間の振動など による吸収スペクトルが観測されることから,赤外・近 赤外分光法とは異なる分子構造情報が取得可能な分析法 として期待されている。

3. 実験装置

まず,可視光を用いた一般的なカラースキャナーの測 定原理を考えてみる(図2)。空間2次元と波長(色)1 次元の3次元情報(カラーイメージ)を取得するカラー スキャナーでは,まずカラーCCDラインセンサーで空 間1次元と波長1次元(分光ラインイメージ)を実時 間測定し,さらに実時間取得した空間1次元と直交方 向にラインセンサーを連続走査することにより,カラー イメージを取得している。この原理に基づいてTHzカラ ースキャナーを実現するためには,実時間でTHz分光 ラインイメージを取得することが肝となるわけである が,われわれは電気光学的時間一空間変換による実時間 THz時間波形計測と,線集光THz結像光学系による実

図3 実験装置

時間 THzラインイメージングを複合することにより達 成した。実験装置を図3に示す。フェムト秒チタンサフ ァイア再生増幅器からのレーザー光 (ポンプ光)を非線 形光学結晶に入射することにより, 高強度 THzパルス を発生させる。サンプルを透過したTHzパルスとプロー ブ光をTHz 検出用電気光学結晶に非共軸入射すること により, THzパルス電場の時間波形がプローブ光の空間 複屈折量分布に変換される(電気光学的時間-空間変 換)⁷⁾。クロスニコル配置の偏光子・検光子ペアによっ てプローブ光の空間強度分布に変換されたTHzパルス電 場時間波形は,結像レンズを介して高速 CMOSカメラの 水平座標に展開される。一方、CMOSカメラの垂直座標 は1次元イメージングに利用可能であるので、円筒 THz レンズ1を用いてTHzビームをサンプルに線集光し、そ れをTHzレンズペア(平凸 THzレンズおよび円筒 THz レンズ1) で電気光学結晶に結像することにより、サン プルの1次元 THzイメージをCMOSカメラの垂直座標に 展開する。このように、水平座標に時間軸、垂直座標に 空間軸が展開された2次元時空間 THzイメージを,高速 ロックイメージング検出する (500fps)⁸⁾。2 次元時空 間 THzイメージの時間軸(水平座標)を高速フーリエ 変換することにより周波数(色)情報とし、THz分光 ラインイメージを得る。したがって、測定サンプルを THz 集光ラインと直交する方向にベルトコンベヤー等

図4 半導体ICのTHz分光イメージ

で連続走査すれば,通常のカラースキャナー同様,その 移動に合わせて,順次,THz分光イメージが生成され ていくことになる。

4. 測定結果

まず,THz 波の良好な物質透過性を生かした計測例 として,半導体 ICのTHz 分光イメージング計測を行っ た。図4は,4つの異なる周波数におけるTHz 分光イメ ージング結果を示している。半導体 ICのパッケージ樹 脂材料を,THz 波が比較的よく透過することはこれま でに報告されているが⁹⁾,その透過具合が周波数によっ て異なっていることが確認できる。また,周波数によっ てイメージのボケ具合が異なるのは,各周波数によって 空間分解能が異なるためである。したがって,THz 波 の透過性とTHz 分光イメージングの空間分解能を考慮 して観測周波数を選択することにより,半導体 ICの内 部検査手段としての利用が期待される。

THz 分光イメージングの有力な産業応用ターゲット して考えられているのが、製薬分野である。これは、医 薬品や農薬の多くが各種の結晶構造に由来する特徴的な THz 指紋スペクトルを示すうえに、結晶多形のような 結晶性変化もスペクトルに敏感に反映されるからである³⁾。 ここでは、4 種類の錠剤サンプル(サンプル(1):ラク トース50mgとポリエチレン粉末 50mg, サンプル(2): D-マルトース25mgとポリエチレン粉末75mg, サンプ ル(3):ポリエチレン粉末100mg,サンプル(4):D-グ ルコース25mgとポリエチレン粉末75mg,いずれも直 径 10mm)の識別に応用した例を示す。図5(a)は、 非同期光サンプリング式 THz 時間領域分光装置^{10),11)} で取得したサンプル(1),(2),(4)の吸収スペクトルを 示しており, ラクトース, D-グルコースおよびD-マル トース特有のTHz 指紋スペクトル(※の部分)がそれぞ れ確認できる。そこで、これらのTHz 指紋スペクトル付 近の周波数 (0.511THz, 1.073THz, 1.405THzおよび 1.609THz) での透過率イメージを、THzカラースキャ ナーで取得した結果が図 5(b)である。イメージコント ラストの差異は小さいものの、吸収スペクトルと分光イ メージの比較から、THz 指紋スペクトルに基づいた錠 剤サンプルの識別が可能である。例えば、左端のサンプ ルは0.511THzおよび1.405THzでの吸収が強いことか らサンプル(1)(ラクトース), 左から2番目のサンプル は1.073THzおよび1.609THzの吸収が強いのでサンプ ル(2)(マルトース),左から3番目のサンプルは各周波 数における吸収が弱いのでサンプル(3)(ポリエチレン 粉末のみ),そして右端のサンプルは1.4THzの吸収が強 いのでサンプル(4)(グルコース)と識別できる。

5.まとめ

読者の中には、「X線ではなく、なぜTHz波?」と疑問に思う方もいらっしゃるかもしれない。確かに、X線を用いると物体内部の情報は取得できるわけであるが、 生体に対する侵襲性が高いうえ、物質透過性があまりに も良すぎてイメージのコントラストがつきにくい測定対 象も少なくない。さらに、モノクロ画像しか取得できな いため、得られる情報は限られてくる。一方、THz 波 は極めて低エネルギー・低侵襲で安全安心な電磁波であ るうえに、「ほどほど」の物質透過性を有しているので、 X線では透過性が良すぎてイメージコントラストがつき にくい測定対象でも、良好に測定できる場合がある。さ らに、内部透視イメージをTHz 周波数ごとの色付きカ ラー画像として取得し,THz 指紋スペクトルによる分 光学的成分分析を利用すれば,「どこに」,「なにが」あ るかを識別できる可能性もある。このような特徴をうま く利用し,THz 波でしか実現できない「キラーアプリ ケーション」の探索が今後重要になるであろう。このよ うなTHzキラーアプリの探索において,動体サンプルに も拡張可能なTHzカラースキャナーは有用なツールにな ると期待される。

錠剤サンプルを提供いただいた大塚電子(㈱の北岸恵子 博士および泉谷悠介博士に謝意を表します。

図5 錠剤サンプルの計測。(a) THz 吸収スペクトル, (b) THz 分光イメージ

参考文献

- K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue: "Nondestructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express, Vol.11, Issue 20, pp.2549~2554 (2003), http://www.opticsinfobase.org/abstract. cfm?uri=oe-11-20-2549
- 2) T. Löffler, T. Bauer, K. Siebert, H. Roskos, A. Fitzgerald, and S. Czasch: "Terahertz dark-field imaging of biomedical tissue," Opt. Express, Vol.9, Issue 12, pp.616~621 (2001), http://www.opticsinfobase.org/oe/abstract. cfm?uri=oe-9-12-616
- 3) Y.-C. Shen and P. F. Taday: "Development and application of terahertz pulsed imaging for non destructive inspection of pharmaceutical tablet," IEEE J. Selected Topics in Quantum Electron., Vol.14, Issue 2, pp.407~415 (2008)
- 4) T. Yasuda, T. Yasui, T. Araki, and E. Abraham: "Real-time two-dimensional terahertz tomography of moving objects," Opt. Comm., Vol.267, Issue 1, pp.128~136 (2006)
- 5) T. Yasui, K. Sawanaka, A. Ihara, E. Abraham, M. Hashimoto, and T. Araki: "Real-time terahertz color scanner for moving objects," Opt. Express, Vol.16, Issue 2, pp.1208~1221 (2008), http://www.opticsinfobase.org/oe/ abstract.cfm?uri=oe-16-2-1208

- 6) M. Schirmer, M. Fujio, M. Minami, J. Miura, T. Araki, and T. Yasui: "Biomedical applications of a real-time terahertz color scanner," Biomed. Opt. Express, Vol.1, Issue 2, pp. 54~366 (2010), http://www.opticsinfobase.org/boe/abstract. cfm?uri=boe-1-2-354
- 7) J. Shan, A. S. Weling, E. Knoesel, L. Bartels, M. Bonn, A. Nahata, G. A. Reider, and T. F. Heinz: "Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling," Opt. Lett., Vol.25, Issue 6, pp.426~428 (2000)
- 8) F. Miyamaru, T. Yonera, M. Tani, and M. Hangyo: "Terahertz two-dimensional electrooptic sampling using high speed complementary metal-oxide semiconductor camera," Jpn. J. Appl. Phys., Vol.43, No.4A, pp.L489~L491 (2004)
- 9) B. B. Hu and M. C. Nuss: "Imaging with terahertz waves," Opt. Lett., Vol.20, Issue 16, pp.1716~1718 (1995)
- 10) T. Yasui, E. Saneyoshi and T. Araki: "Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition," Appl. Phys. Lett., Vol.87, Issue 6, p.061101 (2005)
- 11) T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki : "Fiber-based, hybrid terahertz spectrometer using dual fiber combs," Opt. Lett., Vol.35, Issue 10, pp.1689~1691 (2010)