

ラースキャナー

波用 荷物検査など応用

> 略。テラヘルツ線集光ラ 換し機械的走査機構を省

インを用い、一般のカラ

電気光学的に時間空間変

るようプローブビームの

人を斜め方向から測定す

測定はテラヘルツパル

の応用が期待できる。

人射を工夫するなどし、

過する、四つの構造を持 の四つの周波数成分を透 対象の動き)に合わせ ースキャナーと同じくラ 取得が可能になる。 アラヘルツカラー

画像を に、実時間での2次元の インの動き(または測定 実験ではテラヘルツ波

大脳シナプス

が 角の範囲を 特定周波数 つ金属板を用いた。20% に力を出しており、 らは大脳のシナプスが常

東京大学の河西春郎教

本蔵直樹博士研究員

用しやすく分

成分が透過する様子を約 用いられている絵の具の 20秒でイメージングがで きることを確かめた。低 成分分析など文化財修復 性を生かし、古い絵画に への応用も考えられる。 エネルギー・低侵襲の特 テラヘルツ波は周波数

0・1 デーロラか、波長30 の境界に位置する。テラ 沿−3°が以で光波と電波 して注目されている。 分光学的物質識別能力 価などセンシング技術と 検出、工業製品の品質評 は、危険物や違法薬物の ヘルツ波の物質透過性と

低侵襲で成分分析型内部透視が可能で、荷物検査や薬品製造時の検査など 静止物体に限られていたが、実時間化で動体でも測定ができる。非接触、 ースキャナーを開発した。従来は画像取得に時間がかかるため測定対象は ヘルツ(テラは1兆)波を用い実時間での分光イメージングが可能なカラ 大阪大学大学院基礎工学研究科の荒木勉教授、安井武史助教らは、テラ

学習時の動き解明 東大新顕微鏡法 で可視化

とをラットの実験で解明 を覚えるときはさらに強 い力を出して運動するこ アクチンの重合により力 クチン」を光で標識する パインの形を決めると考 数にある。とげ、であるス した。樹状突起の枝に無 えられるたんぱく質「ア を出し運動する様子を可 しの方法で、シナプスが しい顕微鏡法を開発。 とがわかった。 とどまることが必要なこ クチンゲルがスパインに 時にアクチンが変化する 鏡法で、シナプスの学習 れる。今回、新しい顕微 学誌ニューロンに掲載さ た。モノを覚えるにはア られる様子を可視化し れ、スパインが押し広げ 様子を調べた。その結 アクチンのゲルが形成さ 果、刺激に伴って新たな

> などを合わせ、情報を核 に防災・減災を目指す研

わしい解説文をつけて、感覚

デル開発にも取り組む。 ティ・マネジメント)のモ るための大学SCM 職員にサービスを継続す 病院外来患者や学生、教 ジメントなど。災害時に 災対策、災害情報マネー ービス・コンティニュイ た災害全体像の把握、防 同センターは情報学環 テーマは復興まで含め 7 の開発などにつながる。 の放出機構を治療標的に なことを発見。ウイルス した抗エボラウイルス薬

内輸送を解明

増殖に不可欠な膜たんぱ の輸送で、COPII輪 の仕組みを解明した。こ 送と呼ぶ分子機構が必要 く質VP40の細胞内輸送 授らはエボラウイルスの 東京大学の河岡義裕教

教授(東洋大学教授)は

環。 構

が見ず「新な重」も夏ま

吉合する首上田包りこ

する。同センター長・教 動教員など7教員で構成 付属で、3部局からの流

載される。

成果は科学技術振興機

細の

(JST) の事業の 研究チームはVP40

12日発行の米科学誌に掲

授に就任する田中淳客員

として繊維強化プラスチーを利用した場合、アミン 実験ではモデル高分子 大阪府大添加剤用い新手法 一方でアルキルアミン

学研究科の白井正充教授 **大阪府立大学大学院工**

総合防災情報研究センター設立

応性基を導入すること で、再利用しやすい化合 視化した。13日付の米科

わかりやすく。光 解説

光の波長ごとにイラストやく も知ってもらおうと企画され だけではないと、一般の人に らの科学技術週間に合わせ 枚並べたような横長の形で、 た。A3サイズの紙を横に2 る。光は目に見える可視光線 を1枚のポスターにまどめた 線などさまざまな光のあり方 て、可視光線、紫外線、赤外 「光マップ」を無償で配布す 文部科学省は、4月14日か 文科省が「光マップ」 科学館などを通じて来場者に などを取り上げる。 波長の短い青紫を使った次世 する。例えば可視光線で最も た身近な応用例も一緒に記載 ている。 全国の小・中・高校のほか、 代光ディスク「ブルーレイ」 的に分かりやすいつくりにし 20万枚を作製する予定で、 また、それぞれの光を使

VP40細胞